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SUMMARY

This paper is concerned with the application of radial basis function networks (RBFNs) for solving
non-Newtonian �uid �ow problems. Indirect RBFNs, which are based on an integration process, are
employed to represent the solution variables; the governing di�erential equations are discretized by
means of point collocation. To enhance numerical stability, stress-splitting techniques are utilized. The
proposed method is veri�ed through the computation of the rectilinear and non-rectilinear �ows in a
straight duct and the axisymmetric �ow in an undulating tube using Newtonian, power-law, Criminale–
Ericksen–Filbey (CEF) and Oldroyd-B models. The obtained results are in good agreement with the
analytic and benchmark solutions. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: radial basis function network; non-Newtonian �uid; straight duct; secondary �ow;
undulating tube

1. INTRODUCTION

Continuum mechanics problems often lead to a set of partial di�erential equations (PDEs)
together with a set of boundary conditions through the process of mathematical modelling.
For most problems, discretization techniques are required to reduce complex systems of PDEs
to systems of algebraic equations. Principal discretization methods include the �nite-di�erence
method (FDM), the �nite-element method (FEM), the boundary-element method (BEM), the
�nite-volume method (FVM) and the spectral method. Each method has advantages over
the others for certain classes of problems. They have achieved a lot of success in solving
many engineering and science problems. In FEMs and FVMs, any continuous quantity is
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approximated by a set of piecewise continuous functions de�ned over a �nite number of
subdomains identi�ed as elements or control volumes, i.e. mesh. Generating a mesh is still a
di�cult task, especially for 3D problems or even for 2D problems with complex geometries,
free surfaces or moving boundaries.
The development of numerical methods without using a mesh (meshless or meshfree meth-

ods) for the solution of PDEs has been an active research area recently. As the name suggests,
there may not be any connectivity requirements between data points, leading to an easy pro-
cess of numerical modelling. A comprehensive review of meshless methods can be found in
References [1–4]. Based on the criterion of a computational formulation, they can be divided
into two categories: (a) those based on the approximation of the strong form of PDEs, e.g.
the smoothed particle hydrodynamics [5] and (b) those based on the approximation of the
weak form=inverse statement of PDEs, e.g. the reproducing kernel particle method [6]. On
the other hand, based on the criterion of a mesh requirement, they can be classi�ed into (a)
the so-called truly meshless methods (no mesh is involved at all), e.g. the meshless local
Petrov–Galerkin method [7] and the local radial point interpolation method [8], and (b) the
so-called meshless methods (some mesh is still needed for either the interpolation of solution
variables or the integration of weak form=inverse statement), e.g. the element-free Galerkin
method [9].
RBFNs, which can be regarded as scattered data approximation schemes, have found

applications in many disciplines. A function to be approximated and its derivatives can be
represented by direct RBFNs (DRBFNs) based on a di�erentiation process [10] or by indirect
RBFNs (IRBFNs) based on an integration process [11]. The application of RBFNs for the nu-
merical solution of PDEs was �rst reported by Kansa [12]. Since then, it has received a great
deal of attention from the research community. A great number of publications are available
in the literature, e.g. for a convergence proof and error bound [13], the numerical solution of
potential problems [14–18], high-order di�erential equations [19, 20], Kirchho� plate bending
problems [21] and viscous-�uid-�ow problems [22, 23]. In a standard RBFN-based method,
all dependent variables are �rst approximated by global RBFNs, and the governing equa-
tions are then discretized in the strong form by point collocation. RBFNs need only a set of
discrete points—instead of a set of elements—throughout a volume, which can be randomly
distributed, to approximate the �eld variables; hence, they can be regarded as truly meshless
methods. Since RBFNs fall into the category of high-order approximation, another attractive
feature lies in accuracy for a given number of data points. Furthermore, they require only a
minimum amount of e�ort to implement.
This paper is concerned with the development of IRBFNs for the numerical solution of

non-Newtonian �uid �ow problems. Unlike constitutive models of Newtonian �uids, models
of non-Newtonian �uids are nonlinear, making their computation di�cult. For generalized
Newtonian �uids, e.g. power-law �uid, the viscosity function depends on the rate of defor-
mation of the �uid; while for viscoelastic �uids, e.g. CEF and Oldroyd-B �uids, the stress in
the liquid depends not only on the present boundary data, but also on the history of the strain
[24]. The present method is veri�ed by its applications to the simulation of Newtonian, power
law, CEF and Oldroyd-B �uids �owing through ducts of constant and variable cross-sections
that are induced by axial pressure drop. The obtained results are in good agreement with the
analytic and benchmark solutions.
The remainder of the paper is organized as follows. In Section 2, the governing equations

are given. In Section 3, the numerical formulation of non-Newtonian �uid �ows using RBFNs
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COMPUTING NON-NEWTONIAN FLUID FLOW 1311

is presented. The rectilinear and non-rectilinear �ows in a straight duct and the axisymmetric
�ow through an inde�nitely long undulating tube are simulated in Section 4. Section 5 gives
some concluding remarks.

2. GOVERNING EQUATIONS

Consider the �ow of an incompressible �uid of density � and viscosity �. Any body forces
are assumed negligible. The equations for the conservation of momentum and mass take the
forms

�
(
@v
@t
+ v:∇v

)
=∇:�; x ∈ � (1)

∇:v= 0; x ∈ � (2)

where x is the position vector, t the time, � the domain of interest, v the velocity vector and
� the stress tensor. The stress tensor can be written as

�= − pI+ � (3)

where p is the pressure, I the unit tensor and � the extra stress tensor. In the present work,
the Newtonian, power law, CEF and Oldroyd-B models are considered with the extra stress
tensors de�ned as

�= �Ṡ (Newtonian model) (4)

�= �(�̇)Ṡ; �(�̇)= k|�̇|n−1 (power-law model) (5)

�= �(�̇)Ṡ − 1
2
�1
�Ṡ
�t

+�2Ṡ:Ṡ; �(�̇)= k|�̇|n−1 (CEF model) (6)

�= �sṠ+ S; S+ �
�S
�t

= �Ṡ (Oldroyd-B model) (7)

where Ṡ is the rate of deformation tensor,

Ṡ=∇v+∇vT

�̇ is the scalar magnitude of Ṡ,

�̇=
√
(1=2)tr(Ṡ:Ṡ)

in which ‘tr’ denotes the trace operation; k the consistency factor; n the power-law index; �1
and �2 the �rst and second normal stress coe�cients, respectively; �sṠ the solvent-contributed
stress (�s the solvent viscosity); S the polymer-contributed stress; � the relaxation time; and
�[]=�t the upper convected derivative,

�[]
�t

=
@[]
@t
+ (v:∇)[]− ∇vT:[]− []:∇v
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3. RADIAL BASIS FUNCTION NETWORKS

A function y, to be approximated, can be represented by an RBFN as follows [25]:

y(x) ≈ f(x)=
m∑
i=1
w(i)g(i)(x) (8)

where superscript denotes the elements of an RBFN, x the input vector, m the number of
RBFs, {w(i)}mi=1 the set of network weights to be found, and {g(i)(x)}mi= 1 the set of RBFs.
According to Micchelli’s theorem, there is a large class of RBFs, e.g. multiquadrics, inverse

multiquadrics and Gaussian functions, whose design matrices (interpolation matrices) obtained
from (8) are always invertible provided that the data points are distinct. This is all that is
required for non-singularity of design matrices, whatever the number of data points and the
dimension of problem [25, 26]. It has been proved that RBFNs are capable of representing any
continuous function to a prescribed degree of accuracy in the Lp norm, p ∈ [1;∞] [25, 27]. On
the other hand, according to the Cover theorem, the higher the number of neurons (RBFs)
used, the more accurate the approximation will be [28], indicating the property of ‘mesh
convergence’ of RBFNs. These important theorems can be seen to provide the theoretical
basis for the design of RBFNs to the �eld of numerical solution of PDEs.
In solving PDEs with RBFNs, multiquadrics (MQ) and thin plate splines (TPS) are widely

applied. MQs are the most widely used since several experiments have shown that, in general,
they tend to result in the most accurate approximation. The MQ-approximation scheme gives
exponential convergence with the re�nement of spatial discretization. In practice, the MQ–
RBFN solution can be strongly in�uenced by the RBF width (shape parameter), and how to
choose the best value of this free parameter is still open. On the other hand, TPSs do not
involve the adjustable shape parameter. Like the MQ case, high accuracy can be obtained
using relatively low data densities. However, TPSs possess only linear convergence [18]. In
the present work, these RBFs are implemented, whose forms are

g(i)(x) =
√
(x − c(i))T(x − c(i)) + a(i)2 (MQ) (9)

g(i)(x) = (x − c(i))T(x − c(i)) log(
√
(x − c(i))T(x − c(i))) (TPS) (10)

where c(i) and a(i) are the centre and the width of the ith RBF, respectively, and superscript
T denotes the transpose of a vector. To make the training process simple, the set of centres
is chosen to be the same as the set of collocation points, i.e. {c(i)}mi=1 ≡ {x(i)}pi=1 with m=p,
and the width a(i) is computed using the following relation:

a(i) =�d(i) (11)

where � is a positive scalar and d(i) is the minimum of distances from the ith centre to its
neighbours. Relation (11) allows the MQ width a to be broader in the area of lower data
density and narrower in the area of higher data density in order to achieve a certain amount
of response overlap between each RBF and its neighbours (‘P nearest neighbour’ heuristics)
(Reference [15] and references therein).
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3.1. Direct approach

In the DRBFN approach, the RBFN (8) is utilized to represent the original function y;
subsequently, its derivatives are computed by di�erentiating (8) as

y(x)≈f(x)=
m∑
i=1
w(i)g(i)(x) (12)

@y(x)
@xj

≈ @f(x)
@xj

=
@
(∑m

i=1 w
(i)g(i)(x)

)
@xj

=
m∑
i=1
w(i)h(i)(x) (13)

@2y(x)
@x2j

≈ @2f(x)
@x2j

=
@
(∑m

i=1 w
(i)h(i)(x)

)
@xj

=
m∑
i=1
w(i) �h

(i)
(x) (14)

where subscript j denotes the scalar components of a vector; h(i)(x)= @g(i)(x)=@xj and
�h
(i)
(x)= @h(i)(x)=@xj are new derived basis functions for the approximation of the �rst- and

the second-order derivatives of the original function y, respectively.

3.2. Indirect approach

In this approach, RBFNs are used to represent the highest-order derivatives of a function y,
e.g. @2y=@x21 and @

2y=@x22—the highest ones under consideration here. Lower-order derivatives
and �nally the function itself are then obtained by integrating those RBFNs as follows:

@2y(x)
@x2j

≈ @2f(x)
@x2j

=
m∑
i=1
w(i)[xj]g

(i)(x) (15)

@y(x)
@xj

≈ @f(x)
@xj

=
m+q1∑
i=1
w(i)[xj]H

(i)
[xj](x) (16)

y(x)≈f(x)=
m+q2∑
i=1
w(i)[xj] �H

(i)
[xj](x) (17)

where subscripts [xj] denote the quantities resulting from the process of integration in the xj
direction; q1 the number of new centres in a subnetwork that is employed to approximate a set
of nodal integration constants; q2 = 2q1; H

(i)
[xj] =

∫
g(i) dxj and �H

(i)
[xj] =

∫
H (i) dxj (i=1; 2; : : : ; m)

are new derived basis functions for the approximation of the �rst-order derivative and the
original function y, respectively. For convenience of presentation, the new centres and their
associated known basis functions in subnetworks are also denoted by the notations w(i) and
H (i)(x) ( �H

(i)
(x)), respectively, but with i¿m.

Since integration is a smoothing operation, the approximating functions obtained by the
IRBFN method are expected to be much smoother than those by the DRBFN method. Previous
�ndings showed that the former performs better than the latter in terms of accuracy and
convergence rate [11].
The theoretical justi�cation for applying RBFNs to solve general PDEs has not been es-

tablished yet [17]. Recently, Franke and Schaback [13] gave a convergence proof and error
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1314 N. MAI-DUY AND R. I. TANNER

bound for methods solving constant-coe�cient PDEs by collocation using DRBFNs. A formal
theoretical proof of the superior accuracy of the IRBFN method and the non-singularity of
IRBFN matrices cannot be o�ered at this stage.
Unlike FEMs and BEMs, where the integration process is used to reduce the order of the

continuity required for the variables, the integration process in the IRBFN method is employed
solely to obtain new basis functions from RBFs. In the context of meshless methods, all
relevant integrals in the IRBFN method using MQs and TPSs are determined analytically,
leading directly to a truly meshless method; while the integration of the weak form associated
with FEM or the inverse statement associated with BEM must be computed numerically, and
hence they require some special treatments, e.g. using local weak form=local inverse statement,
to achieve a meshfree feature.
When the problem dimension N is greater than 1, the size of a system of equations obtained

by the IRBFN approach is about N times as big as that by the DRBFN approach. Thus, it
is necessary to make a prior conversion of the multiple spaces of network weights into the
single space of function values to overcome this drawback.
The evaluation of (15)–(17) at a set of collocation points {x(k)}mk=1 yields

f; jj =Gw[xj] (18)

f; j =H[xj]w[xj] (19)

f = �H[xj]w[xj] (20)

where G, H and �H, whose rows can be seen in (28), (27) and (26), are the design matrices
associated with the approximation of the second-order derivative, the �rst-order derivative,
and the function, respectively; w[xj] the set of network weights in the xj direction to be
found; f = {f(x(k))}mk=1; f;j= {@f(x(k))=@xj}mk=1 and f;jj= {@2f(x(k))=@x2j }mk=1. For the purpose
of computation, the two matrices G and H are augmented using zero-submatrices so that they
have the same size as the matrix �H. By solving (20) using the general linear least squares
method, the set of network weights can be expressed in terms of the nodal function values as

w[xj] = �H
−1
[xj]f (21)

where �H
−1
[xj] is the Moore–Penrose pseudo-inverse, and the dimensions of w, �H

−1
[xj] and f are,

respectively, (m+ q2)× 1, (m+ q2)×m and m× 1. Substitution of (21) into (18)–(20) yields

f; jj =G �H
−1
[xj]f (22)

f; j =H[xj]
�H

−1
[xj]f (23)

f = �H[xj]
�H

−1
[xj]f (24)

Cross derivatives @f2(x)=@xi@xj can be straightforwardly computed by using the design ma-
trices associated with the �rst-order derivatives (23). Although the order of di�erentiation
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makes no di�erence, it would be better to take the average due to numerical error,

@2f
@xi@xj

=
1
2

(
@
@xi

(
@f
@xj

)
+
@
@xj

(
@f
@xi

))

f; ij = 1
2(H[xi]

�H
−1
[xi](H[xj]

�H
−1
[xj]f) +H[xj]

�H
−1
[xj](H[xi]

�H
−1
[xi]f)) (25)

Expressions of f and its derivatives at an arbitrary point x can be given by

f(x) =
1
N

N∑
j=1
([ �H

(1)
[xj](x); : : : ; �H

(m+1)
[xj] (x); : : : ; �H

(m+q1+1)
[xj] (x); : : :] �H

−1
[xj]f) (26)

@f(x)
@xj

= [H (1)
[xj](x); : : : ; H

(m+1)
[xj] (x); : : : ; 0; : : :] �H

−1
[xj]f (27)

@2f(x)
@x2j

= [g(1)[xj](x); : : : ; 0; : : : ; 0; : : :]
�H

−1
[xj]f (28)

@2f(x)
@xi@xj

=
1
2
([H (1)

[xi] (x); : : : ; H
(m+1)
[xi] (x); : : : ; 0; : : :] �H

−1
[xi](H[xj]

�H
−1
[xj]f)

+[H (1)
[xj](x); : : : ; H

(m+1)
[xj] (x); : : : ; 0; : : :] �H

−1
[xj](H[xi]

�H
−1
[xi]f)) (29)

where N is the dimension of the problem. In (26), the approximate function f at x is taken
to be the average value of f[xj](x)’s due to numerical error.
From (26)–(29), a function y and its derivatives are now expressed in terms of function

values rather than in terms of network weights. As a result, in solving PDEs, the present
IRBFN method leads to a system of equations whose size is approximately equal to that
of the DRBFN method, irrespective of the problem dimension. The process of transforming
network-weight space into physical space completely eliminates the problem of the large
system=�nal-matrix size of the IRBFN method. However, the IRBFN method requires more
work than the DRBFN method.

3.3. The numerical IRBFN formulation

Each dependent variable and its derivatives in the governing equations (1)–(7) can be ap-
proximated by RBFNs using either (12)–(14) for the DRBFN approach or (26)–(29) for the
IRBFN approach. The closed-form representations obtained are substituted into the governing
equations, and the system of PDEs is then discretized by means of point collocation. The
RBFN solution thus satis�es the governing equations pointwise rather than in an average
sense. In the present work, only the IRBFN approach is employed. In contrast to previous
works dealing with potential and viscous �ow problems [15, 22], the present IRBFN formula-
tion is expressed in terms of the nodal variable values. For the elliptic momentum equations,
one only needs to enforce these equations at interior points because the velocity boundary
conditions are prescribed along the entire boundary. For the hyperbolic constitutive equations,

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:1309–1336



1316 N. MAI-DUY AND R. I. TANNER

the IRBFN formulation is demonstrated through one equation in (7), e.g. for Szz,

nip∑
i=1

{
S(i)zz + �

(
v(i)r

m∑
j=1
(H[r] �H

−1
[r] )[i; j]S

(j)
zz + v

(i)
z

m∑
j=1
(H[z] �H

−1
[z] )[i; j]S

(j)
zz

−2S(i)rz
m∑
j=1
(H[r] �H

−1
[r] )[i; j]v

(j)
z − 2S(i)zz

m∑
j=1
(H[z] �H

−1
[z] )[i; j]v

(j)
z

)

−2�
m∑
j=1
(H[z] �H

−1
[z] )[i; j]v

(j)
z

}2
→ 0 (30)

where (r; �; z) denotes the cylindrical polar coordinates, nip the number of interior points, m
the number of centres excluding centres on the tube wall and [i; j] the element located at row
i and column j of a matrix. On the tube wall, (7) is reduced to a set of algebraic equations
because of �S=�t=0; consequently, the stress components can be easily computed. In this
regard, for solving hyperbolic equations, one may not need to include the tube-wall points in
the set of centres. Other equations in (7) can be discretized in a similar fashion. The IRBFN
discretization leads to a square system of equations.

4. NUMERICAL EXAMPLES

Axial-pressure-drop-induced �ows in a straight duct and in a ‘wiggly’ tube using Newtonian,
power law, CEF and Oldroyd-B �uid models are simulated to study the performance of the
IRBFN method.

4.1. Rectilinear and non-rectilinear �ows in a straight duct

MQs are employed to compute �ows of a power-law �uid through circular and non-circular
tubes, while TPSs are used to simulate the �ow of a viscoelastic �uid through a square
duct. For simplicity, in the MQ-based approximation scheme, the factor � is chosen to be
unity. To enhance numerical stability, a stress-splitting formulation is employed. The resulting
nonlinear system of equations is solved by a decoupled approach, where a Picard-type iteration
scheme is utilized to render nonlinear terms linear. At each iteration, a perturbed Newtonian
problem and a constitutive model are solved in two sequential steps. For a given kinematics,
a pseudo-body force �eld is obtained by solving the constitutive model. The kinematics are
then updated by solving the momentum and the continuity equations. The procedure is iterated
until a stopping criterion is satis�ed. Hence, an attractive feature of this technique lies in the
small requirement of computer memory. For low values of n, it is necessary to relax the
iterative process by applying a relaxation factor to the �eld variables according to, e.g. for a
component velocity vj,

vj= �v
(k)
j + (1− �)v(k−1)j (31)
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where � is the relaxation factor (0¡�6 1) and superscript k indicates the current iteration.
Convergence measure (CM) at the kth iteration is de�ned as

CM=

√√√√∑N
j=1

∑m
i=1[v

k
j (x(i))− vk−1j (x(i))]2∑N

j=1

∑m
i=1[v

k
j (x(i)))]2

where N is the problem dimension and m the number of collocation points.

4.1.1. Fully developed laminar �ow of power-law �uid in a straight circular pipe. For the
�ow of a power-law �uid in a straight circular pipe (vr =0; v�=0; vz= vz(r)), the continuity
equation (2) is automatically satis�ed, and the momentum equation (1) can be reduced to

1
r
@
@r

(
�r
@vz
@r

)
− @p
@z
=0 (32)

�= k
∣∣∣∣@vz@r

∣∣∣∣
n−1

(33)

on the domain 0¡r¡R, which is solved subject to the boundary conditions

@vz
@r
=0 at r=0 (34)

vz =0 at r=R (35)

The exact solution of this problem is

vze=
n

n+ 1

(−@p=@z
2k

)1=n
R(n+1)=n

[
1−

( r
R

)(n+1)=n]

Since the exact solution is available, the accuracy of a numerical solution can be measured
via the norm of relative errors of the solution as follows:

Ne=

√∑m
i=1[vze(x(i))− vz(x(i))]2∑m

i=1 vze(x(i))2
(36)

where vz and vze are the calculated and the exact solutions, respectively.
The governing equation (32) can be rewritten as

�
@2vz
@r2

+
@�
@r
@vz
@r

− @p
@z
+
�
r
@vz
@r
=0 (37)

This equation is widely used in FDMs. For generalized Newtonian �uids, the viscosity � is
a function of the velocity �eld. As a result, a system matrix obtained from (37) varies and
needs to be inverted at each iteration.
The power-law �uid implies an in�nite viscosity when the shear rate �̇ vanishes; some

special treatments for terms involving � are required. Young and Wheeler [29] treated this
in�nity by using a truncation procedure. A large value of the viscosity, namely �max, is given.
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1318 N. MAI-DUY AND R. I. TANNER

Figure 1. Rectilinear �ow of power-law �uid in a straight pipe, k =1, @p=@z= − 1, n=0:75, �=1, 13
data points: comparison of convergence behaviour of the iterative procedure between two cases �0 = ��
(solid line) and �0 = �N (dashed line). The former converges much faster and is stabler than the latter.

If � does not exceed �max, then the computed value is accepted. Otherwise, � is set equal
to �max. For collocation methods, one can simply treat this singularity by not applying the
governing equations at points of in�nite viscosity. In the present work, the extra stress tensor
is decomposed into two components

�=([�− �0] + �0)Ṡ=[�− �0]Ṡ+ �0Ṡ (38)

It is obvious that �0 can be chosen arbitrarily. Substitution of (38) into (32) yields

�0

(
@2vz
@r2

+
1
r
@vz
@r

)
− @p
@z
+
(
@
@r

(
[�− �0] @vz@r

)
+
[�− �0]
r

@vz
@r

)
=0 (39)

in which the last two terms on the left-hand side can be regarded as a pseudo-body force.
A system matrix obtained from (39) depends only on the geometry and hence needs to be
inverted only once.
The question here is how to choose an optimum �0. Two studies are conducted. Firstly, �0

is chosen to be the Newtonian-like viscosity corresponding to n=1 (�0 = �N = k); secondly,
�0 is taken to be the average viscosity of the previous iteration (�0 = ��). Numerical experience
shows that the case �0 = �� outperforms the case �0 = �N regarding the convergence behaviour
of an iterative procedure (Figure 1) and the achievement of a low-power-law-index solution.
A wide range of n varying from 1 to 1=5 is considered. All values of k, −@p=@z and R

are chosen to be unity. The obtained results are displayed in Figure 2, where the velocity
component vz is normalized with the average velocity �vz=2�

∫ 1
0 rvz(r) dr in which the integral

is computed using Simpson rule. Good agreement is seen between the exact and the computed
solutions. For example, at n=1=5, the method achieves a small error-norm, Ne=6:4e−4, using
13 collocation points. ‘Mesh convergence’ is shown in Figure 3, where the IRBFN solution

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:1309–1336



COMPUTING NON-NEWTONIAN FLUID FLOW 1319

Figure 2. Rectilinear �ow of power-law �uid in a straight pipe, k =1, @p=@z= − 1: the computed
velocity pro�les for a wide range of n using 13 collocation points. Good agreement is shown between

the computed and the exact (solid line) solutions for all values of n.

Figure 3. Rectilinear �ow of power-law �uid in a straight pipe, k =1, @p=@z=−1, n=1=5: convergence
rate. The IRBFN solution converges apparently as O(h3:85), where h is the data point spacing.
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converges apparently as O(h3:85) in which h is the centre spacing. As mentioned earlier, the
MQ width can critically a�ect the performance of MQ–RBFNs. However, there is no general
theory yet for determining the best value of the MQ width. Consequently, in practice, it is
di�cult to achieve exponential convergence, even for the case of function approximation.

4.1.2. Fully developed laminar �ow of power-law �uid in a square duct. Computing the �ow
in a square duct is known to be more complicated than computing the �ow in a circular pipe
�ow. A two-dimensional computation is required. For non-Newtonian �uids, exact solutions
are not available; one needs to resort to numerical methods. Hartnett and Kostic [30] gave a
comprehensive review on the heat transfer behaviour and the friction factor of the generalized-
Newtonian-�uid �ow through a rectangular duct. The �ow was simulated by a number of
numerical methods, for example, a variational principle [31], FDM [32] and FEM [33]. It
was indicated that convergence often fails for n¡0:4.
It is plausible to assume that the �ow of an inelastic �uid in a straight duct is rectilinear, i.e.

vx=0; vy=0 and vz= vz(x; y). The governing equations (1)–(3) and (5) can be reduced to

@
@x

(
�
@vz
@x

)
+
@
@y

(
�
@vz
@y

)
− @p
@z
=0 (40)

�= k

[(
@vz
@x

)2
+
(
@vz
@y

)2](n−1)=2
(41)

A stress-splitting formulation is employed here to enhance numerical stability and reduce
computational e�ort. Owing to the symmetry, only a quarter of the 2D domain is considered
(Figure 4). The domain of interest, @p=@z and k are chosen to be 0:5× 0:5, −1 and 1, re-
spectively. Special attention is given to the treatment for the Neumann condition @vz=@ �n ( �n
the coordinate normal to the boundary). The present method implements this type of bound-
ary condition as follows. Along the two sides x=0 and y=0, normal derivatives @vz=@ �n are
given, and hence the task now is to express the nodal values of vz along these sides in terms
of the interior nodal variable values. This can be achieved by solving the following subsystem
of equations:

@vz(x(i))
@ �n

=
m∑
j=1
(H[xn]

�H
−1
[xn])[i; j]v

(j)
z (42)

where x(i) = {(x=0; y); (x; y=0)}. Making use of the results obtained from (42) and the
Dirichlet condition (vz=0 along the wall), a square system of equations is obtained with the
unknowns being only the interior variable values. Once the system of equations is solved, a
numerical solution vz along these two sides (x=0 and y=0) may be found from (42).
Again, the case �0 = �� yields faster convergence than the case �0 = �N . For example, at

n=0:8 and �=0:1, it takes about 10 and 35 iterations to obtain convergence (CM¡1:e− 6)
for �0 = �� and �0 = �N , respectively. Furthermore, low values of n, at least 1=5, are simu-
lated successfully with the former, while the latter is only able to obtain convergence for
1¿ n¿ 0:4. Due to the fact that the solving procedure is Picard-type iterative, an initial solu-
tion can greatly a�ect convergence behaviour. Here, the computed solutions at greater values
of n are chosen to be initial solutions. Figure 5 presents the plot of convergence measure
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Figure 4. Power law and CEF �uids �owing through a square duct: domain of interest, discretization
and boundary conditions (vz: power-law �uid, rectilinear �ow; vz; 	; !; @	=@ �n: CEF �uid, non-rectilinear
�ow). The problem domain is simply represented by a set of discrete points instead of a set of elements.

Figure 5. Rectilinear �ow of power-law �uid in a square duct, k =1, @p=@z= − 1, n= 1
5 , �=0:3,

data density of 11× 11: e�ect of an initial solution on convergence. The computed solutions at higher
values of n are used as initial solutions (solid line: n=1, dashed line: n= 1

2 , and dash–dot line: n=
1
4).

It is relatively di�cult to obtain convergence for n= 1
5 as a large number of iteration is required. A

closer initial solution yields faster convergence.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:1309–1336



1322 N. MAI-DUY AND R. I. TANNER

Table I. Rectilinear �ow of power-law �uid in a square duct: comparison of the friction factor fRe
between the IRBFN method using 27× 27 data points and other methods.

fRe

n IRBFN Variational [31] FDM [32] General expression [34] FEM [33]

1.0 14.22 14.27 14.22 14.21 14.22
0.9 11.88 11.90 11.96 11.88
0.8 9.91 9.91 10.06 9.91
0.7 8.26 8.26 8.45 8.26
0.6 6.88 6.88 7.08 6.88
0.5 5.72 5.755 5.72 5.93 5.72
0.4 4.74 4.74 4.95 4.74
0.3 3.91 4.11 3.91
0.2 3.17 3.38 3.19

All predictions are in good agreement over a wide range of n.

versus iteration for several initial solutions. It can be seen that a closer initial solution yields
faster convergence.
Another important quantity associated with this type of �ow is the friction factor-Reynolds

number product, termed fRe, which describes the relationship between �ow rate and pressure
drop. For the problem under consideration, the quantity fRe has the form

fRe=
1
2 �vnz

(43)

where �vz is the average velocity in the �ow direction, de�ned as

�vz=4
∫ 0:5

0

∫ 0:5

0
vz(x; y) dx dy

in which the double integral can be evaluated using Simpson quadrature. Based on the
Rabinowitsch–Mooney equation, Kozicki et al. [34] derived an approximate expression of
the friction factor de�ned as, e.g. for a square duct,

fRe=23n+1
(
0:6771 +

0:2121
n

)n

Results for the friction factor obtained by the present method and other methods [31–34] are
summarized in Table I. These predictions are in good agreement over a wide range of n. The
maximum relative error between IRBFN and FEM is less than 0.7%.

4.1.3. Fully developed �ow of viscoelastic �uid in a square duct. Viscoelastic �uids possess
both viscous and elastic properties. For the fully developed �ow of a viscoelastic �uid through
a straight duct, the second normal stress di�erence is expected to generate some secondary
�ow which is transverse to the main �ow along the axis of a duct. However, it does not
happen for all cases [24]. For example, the �ow is still rectilinear if the slip surfaces are
parallel planes or coaxial circular cylinders; or if the second normal stress coe�cient (�2)
is a constant multiple of the viscosity function. Nevertheless, the appearance of transverse
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circulations can be seen as a distinguishing feature of viscoelastic �uids relative to inelastic
�uids. As a result, much attention is paid to the investigation of the development of secondary
motions. In earlier studies, Green and Rivlin [35] examined the �ow in a tube of elliptical
cross-section, using a special constitutive equation, and found a weak secondary circulation
in each quadrant, whereas Langlois and Rivlin [36] extended this work for a more general
class of �uids. The secondary �ow in a rectangular duct was then studied extensively, for
example, using perturbation approximation [37], FVM [38, 39], FDM [40] and FEM [41].
For the purpose of validating the IRBFN method, the present work considers the �ow of

a 2% viscarin solution in distilled water through a straight duct of square cross-section that
was studied numerically and experimentally by Gervang and Larsen [38]. In view of the fact
that the secondary �ow is weak, i.e. the transverse velocity components are small relative to
the main axial velocity component, the �uid can be modelled by the CEF equation for which
rheometric functions are available:

�= k�̇n−1; k=8:5 Pa sn; n=0:37

�1 = k1�̇
n1 ; k1 = 5:96 Pa sn1+2; n1 = − 1:35

�2 =−0:15�1

Since the fully developed �ow is independent of the streamwise coordinate, the governing
equations in a stress-splitting form can be reduced to

�
(
vx
@vx
@x
+ vy

@vx
@y

)
=−@p

@x
+ �0

(
@2vx
@x2

+
@2vx
@y2

)
+
@Sxx
@x

+
@Sxy
@y

(44)

�
(
vx
@vy
@x

+ vy
@vy
@y

)
=−@p

@y
+ �0

(
@2vy
@x2

+
@2vy
@y2

)
+
@Syx
@x

+
@Syy
@y

(45)

�
(
vx
@vz
@x
+ vy

@vz
@y

)
=−@p

@z
+ �0

(
@2vz
@x2

+
@2vz
@y2

)
+
@Szx
@x

+
@Szy
@y

(46)

where

S=(�(�̇)− �0)Ṡ − 1
2
�1
�Ṡ
�t

+�2Ṡ:Ṡ

The domain of interest can be reduced to a two-dimensional space and in addition, for sym-
metry reasons, only a quarter of the 2D domain, [0; l=2]× [0; l=2], is considered (Figure 4).
The pressure variable appearing in (44) and (45) is simply treated here by converting the

x and y components of the velocity vector into the stream function 	 and the vorticity ! as

!=
@vy
@x

− @vx
@y

(47)

@	
@y
= vx;

@	
@x
= −vy (48)
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The governing equations (44)–(46) can be reformulated into

@2	
@x2

+
@2	
@y2

+!=0 (49)

�
(
@	
@y

@!
@x

− @	
@x
@!
@y

)
= �0

(
@2!
@x2

+
@2!
@y2

)
+
@2Sxy
@x2

− @2(Sxx − Syy)
@x@y

− @2Sxy
@y2

(50)

�
(
@	
@y

@vz
@x

− @	
@x
@vz
@y

)
=−@p

@z
+ �0

(
@2vz
@x2

+
@2vz
@y2

)
+
@Szx
@x

+
@Szy
@y

(51)

The boundary conditions for 	, ! and vz are

	=0; !=0;
@vz
@y
=0 on the line y=0 (52)

	=0; !=0;
@vz
@x
=0 on the line x=0 (53)

	=0;
@	
@y
=0; vz=0 on the line y=

l
2

(54)

	=0;
@	
@x
=0; vz=0 on the line x=

l
2

(55)

The implementation of the Neumann condition @vz=@ �n is similar to the previous problem. It
is necessary to generate a computational boundary condition for ! at the walls x= l=2 and
y= l=2 using the prescribed boundary conditions (@	=@ �n). The process is as follows. In the
�rst step, the vorticity in (49) can be simpli�ed to be

!=−@
2	
@x2

− @2	
@y2

= − @2	
@x2

at the line x=
l
2

(56)

!=−@
2	
@x2

− @2	
@y2

= − @2	
@y2

at the line y=
l
2

(57)

In the second step, they are written in terms of the �rst-order derivatives of 	

!(i) =−@
2	(i)

@x2
=

m∑
j=1
(GH−1

[x] )[i; j]
@	
@x

(j)

at the line x=
l
2

(58)

!(i) =−@
2	(i)

@y2
=

m∑
j=1
(GH−1

[y] )[i; j]
@	
@y

(j)

at the line y=
l
2

(59)
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and the resulting expressions (58) and (59) are then simpli�ed by taking into account the
Neumann condition @	=@ �n. In the third step, the remainder of the nodal �rst-order derivatives
of 	 on the right-hand sides of (58) and (59) are expressed in terms of the nodal stream
function values, for example, at the boundary point x(i),

@	
@x

(i)

=
m∑
j=1
(H[x] �H

−1
[x] )[i; j]	

(j) (60)

@	
@y

(i)

=
m∑
j=1
(H[y] �H

−1
[y] )[i; j]	

(j) (61)

A computational Dirichlet condition for ! is thus generated and written in terms of the nodal
values of 	.
Three sets of uniformly distributed data points, 21× 21, 26× 26 and 31× 31 are employed.

The parameters @p=@z, � and l are chosen to be 1:0e5 (Pa=m), 0 and 0:004 (m), respectively.
The obtained results including the axial velocity, vorticity, secondary velocity vector and
second normal stress di�erence are displayed in Figure 6, which look feasible when compared
to the available solutions in the literature. To study convergence behaviour of the method,
the results at the �nest discretization are regarded as the ‘exact solutions’ and the errors at
coarser discretizations are then computed relative to the exact ones. Table II shows that errors
consistently reduce with an increase in data density. It can be seen that the transverse velocity
components are much smaller than the axial velocity component.

4.2. Corrugated tube �ow

The steady-state axisymmetric non-Newtonian �uid �ow through an undulating tube has
received much attention over recent decades for a number of reasons: (a) for the evaluation
of constitutive equations, (b) for the testing of numerical methods in non-Newtonian �ow
calculations and (c) for the understanding of viscoelastic e�ects in �ow through porous me-
dia [42]. In the context of numerical computation, this problem was studied by a variety
of numerical methods, for example, the mixed spectral �nite-di�erence methods (the pseudo-
spectral=�nite-di�erence method (PSFD), the pseudo-spectral cylindrical=�nite-di�erence
method (PCFD)) [42–44], the full pseudo-spectral method (the Fourier–Chebyshev collo-
cation method (FCC)) [45], FEM [46] and BEM [47]. The comprehensive results obtained
by PSFD, PCFD and FCC can be regarded as the benchmark solutions. There is no limit
point in Weissenberg number for PCFD and PSFD; their numerical calculations have shown
no substantial increase of the �ow resistance with increasing �ow elasticity.
The local radius of an in�nitely long corrugated tube is given by

rw(z)=R(1− 
 sin(2�z=L)) (62)

where rw is the radius at the wall, 
 the dimensionless amplitude of the corrugation, L the
wavelength and R the mean radius of the tube (Figure 7). In addition to 
, another character-
istic dimensionless number is the aspect ratio N , related to the dimensionless wave number
l by N =R=L= l=(2�). Owing to the fact that the �ow is axisymmetric and periodic, only a
reduced domain needs to be considered as shown in Figure 7.
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(a) (b)

(c) (d)

Figure 6. Non-rectilinear �ow of CEF �uid in a square duct, data density of 31× 31: some contour
plots: (a) primary �ow (vz); (b) secondary �ow (!); (c) secondary �ow (̃v=(vx; vy)); and (d) second

normal stress di�erence.

Table II. Non-rectilinear �ow of CEF �uid in a square duct: the extreme values of the
velocity components and the stream function.

Density (vz)max (error) (
√
v2x + v2y)max (	)min (error) (	)max (error)

21× 21 567.8 (0.33%) 4.1 −1:245 (1:03%) 1.245 (1.03%)
26× 26 569.5 (0.03%) 4.1 −1:256 (0:15%) 1.256 (0.15%)
31× 31 569.7 4.1 −1:258 1.258
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Figure 7. ‘Wiggly’ tube problem: geometry. The shaded area represents a unit computation cell.

Of interest to the experiments is the �ow resistance (friction factor f times Reynolds
number in the limit Re → 0) de�ned as

fRe=
2��PR4

L(�+ �s)Q
(63)

where �P is the pressure drop per unit cell.
The 	–! formulation is adopted, where the full governing equations can be found in

Reference [48]. The Newtonian, power-law and Oldroyd-B �uid models are considered. For
a power-law �uid, the stress-splitting formulation is employed.
The boundary conditions for �ow in a corrugated tube are (a) symmetric conditions on the

centreline, (b) no-slip boundary conditions on the wall and (c) periodic conditions for each
dependent variable and its normal derivative on the inlet and outlet, i.e.

	=0; !=0 (the centreline) (64)

	=
Q
2�
;
@	
@ �n
=0

(
@	
@z
=0;

@	
@r
=0
)

(the wall) (65)

	i =	o;
@	i

@ �n
=
@	o

@ �n
; !i =!o;

@!i

@ �n
=
@!o

@ �n
(inlet and outlet) (66)

where �n is the coordinate normal to the boundary, Q the �ow rate, superscripts i and o the
inlet and outlet, respectively. The implementation of boundary conditions for ! on the tube
wall is similar to the previous problem (�ow in a square duct) and will not be repeated here.
Three data densities, namely 17× 17, 21× 21 and 25× 25, are employed (Figure 8). Only

MQs with �=1 are implemented to study this problem.

4.2.1. Newtonian �ow. Creeping �ow: The unsymmetric IRBFN collocation method is �rst
tested with the creeping �ow of a Newtonian �uid. Several tube geometries are consid-
ered. The �ow resistance computed by the present method is given in Table III. Results by
other methods such as FCC, PSFD, PCFD and BEM are also included for comparison. Good
agreement is obtained for all test cases.
Inertial �ow: Consider the inertial �ow of a Newtonian �uid through a tube of 
=0:3 and

N =0:16. This �ow was studied by Lahbabi and Chang [49] using the global Galerkin=spectral

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:1309–1336



1328 N. MAI-DUY AND R. I. TANNER

(a)

(b)

(c)

Figure 8. ‘Wiggly’ tube problem: computational domain and discretizations. (+) boundary point,
(:) interior point. The problem domain is simply represented by a set of discrete points instead
of a set of elements: (a) 17× 17 data points; (b) 21× 21 data points; and (c) 25× 25 data points.

method and by Pilitsis and Beris [45] using the Galerkin �nite-element method (GFE) and
FCC for a wide range of Re from 0 to 783. For a Newtonian �uid, the nonlinearity is due
to the convective term only.
Table IV shows that errors at coarser densities, which are computed relative to the �nest

density, reduce with an increase in data density. The �ow resistance obtained by the present
method at the �nest density (25× 25) and those obtained by the spectral method and FEM for
the above range of Re are presented in Table V. The present results agree well with the FCC
ones. Contour plots of the stream function and the vorticity �elds at Re= {0; 22:6; 73; 397:2}
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Table III. ‘Wiggly’ tube problem, Newtonian �uid, Re=0:0, 25× 25: the computed �ow resistance by
the present method and other methods for several geometries.

fRe


=0:1 
=0:2 
=0:2 
=0:3 
=0:286
Method N =0:5 N =0:1042 N =0:5 N =0:1592 N =0:2333

IRBFN 17.7480 19.7582 23.2883 26.4331 26.3814
BEM∗ 17.7346 19.7268 23.2253 26.3759 26.3285
FCC† — 19.7655 — 26.437 26.383
PSFD† 17.75 19.765 — 26.436 26.383
PCFD† 17.75 19.761 23.28 26.432 26.377
FEM† — 19.756 — 26.385 26.293
Pertb.∗ 17.85 19.38 23.41 24.16 24.42
GSM‡ — 19.76 — 26.40 25.85

Good agreement is achieved for all cases. Pertb.: Perturbation analysis; GSM: Galerkin spectral method.
∗[47].
†[43].
‡[49].

Table IV. ‘Wiggly’ tube problem (
=0:3;N =0:16), Newtonian �uid: the computed �ow resistance by
the IRBFN method for a wide range of Re.

fRe (Error %)

Re 17× 17 21× 21 25× 25
0.0 26.4548 (0.0389) 26.4462 (0.0064) 26.4445
0.012 26.4548 (0.0389) 26.4462 (0.0064) 26.4445
12.0 27.1968 (0.0718) 27.1814 (0.0151) 27.1773
22.6 28.5797 (0.0918) 28.5594 (0.0207) 28.5535
51.0 31.7581 (0.0220) 31.7569 (0.0183) 31.7511
73.0 33.4312 (0.0676) 33.4583 (0.0135) 33.4538
132.0 36.4210 (0.3322) 36.5485 (0.0167) 36.5424
207.4 38.6855 (0.8054) 39.0200 (0.0523) 38.9996
264.0 39.7736 (1.3170) 40.3439 (0.0980) 40.3044
397.2 41.1336 (3.1227) 42.5737 (0.2690) 42.4595
783.0 — 46.0876 (0.7595) 45.7402

are displayed in Figure 9. The creeping �ow �eld is symmetric about the widest cross-section.
When a Reynolds number is introduced, the symmetry is broken. Recirculation starts at a �nite
Reynolds number. The vortex increases in size and shifts downstream with an increase in Re.

4.2.2. Inertial �ow of power-law �uid. Consider dilute aqueous solution of a polyacrylamide
(Dow Separan AP-30) corresponding to 0.05% polyacrylamide concentrations by weight. The
power-law parameters are given by Deiber and Schowalter [50] as n=0:54 and k=1Pa sn−1.
Due to the shear-thinning form of the viscosity, there are steep boundary layers near solid
boundaries, leading to di�culty in computation [42]. The �ow of a power-law �uid through
an undulating tube (
=0:3; N =0:1592), which was simulated by PCFD [42], is considered
here.
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Table V. ‘Wiggly’ tube problem (
=0:3;N =0:16), Newtonian �uid: comparison of the �ow resistance
for a wide range of Re between the present method and other methods.

fRe

IRBFN FCC∗ GFE∗

Re 25× 25 GSM∗ Nx =16; Nc =33 Nr =40; Nz =40

0.0 26.4445 26.4 26.4484 26.4193
0.012 26.4445 26.4 26.4484 26.4193
12.0 27.1773 27.1 27.1791 27.0911
22.6 28.5535 28.5 28.5536 28.4433
51.0 31.7511 31.7 31.7484 31.6984
73.0 33.4538 33.4 33.4488 33.4039
132.0 36.5424 36.7 36.5264 36.5392
207.4 38.9996 38.9 38.9607 38.9330
264.0 40.3044 39.7 40.2446 40.1544
397.2 42.4595 40.6 42.3479 42.1112
783.0 45.7402 41.2 45.5828 45.0734

Good agreement is shown for the whole range of Re. The IRBFN method has better agreement with the
FCC. GFE: Galerkin �nite element method; GSM: Galerkin spectral method; Nx; Nc: the number of Fourier,
Chebyshev modes in the axial and stretched radial directions, respectively; and Nr; Nz: the number of elements
in the r and z directions, respectively.
∗[45].

The Reynolds number and the �ow resistance for this problem are, respectively, de�ned
as [42]

Re=
2n�n−2�Q2−nR3n−4

k
(67)

fRe=
2n�n�PR3n+1

kLQn
(68)

A decoupled approach is adopted to solve the governing equations; the nonlinearity, which
arises from the viscosity function and the convective term, is treated by using a Picard’s
iterative scheme. Results for the �ow resistance obtained by the present method are given in
Table VI together with those obtained by PCFD. The two numerical predictions show good
agreement.

4.2.3. Creeping �ow of Oldroyd-B �uid. A coupled approach is adopted. The nonlinearity,
which arises from the convected stress derivatives, is handled by using trust region methods
that retain two attractive features, namely rapid local convergence of the Newtonian iteration
method and strong global convergence of the Cauchy method [51]. The boundary conditions
for the stress tensor are

@Szz
@r

=0; Srz=0;
@Srr
@r

=0;
@S��
@r

=0 (the centreline) (69)
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Figure 9. ‘Wiggly’ tube problem, 
=0:3, N =0:16, 25× 25, Newtonian �uid: contour plots of the
stream function 	 and the vorticity ! for several Re’s.
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Table VI. ‘Wiggly’ tube problem (
=0:3;N =0:1592), power-law model (n=0:54; k =1:0):
the computed �ow resistance by IRBFN and PCFD for a wide range of Re.

fRe

IRBFN PCFD∗

Re 25× 25 Nx =16; Np=100

0.0 9.1268 9.1052
1.528 9.1434 9.1240
12.484 9.8270 9.8508
21.581 10.3788 10.3885
36.912 11.0120 11.0083
50.430 11.4189 11.3988
62.905 11.7202 11.6876
85.934 12.1586 12.1067

The IRBFN results agree well with the PCFD results. Note that Nx; Np denote the numbers of
Fourier mode and �nite di�erence points in the axial and stretched radial directions, respectively.
∗[42].

S izz = S
o
zz;
@S izz
@ �n

=
@Sozz
@ �n
; S irz= S

o
rz;
@S irz
@ �n

=
@Sorz
@ �n

· · · (inlet and outlet) (70)

A Weissenberg number is de�ned as [43]

We=
�Q
R3

(71)

Along the wall of a tube, all convected stress derivatives vanish, and hence the constitutive
equations are reduced to algebraic equations which can be easily solved pointwise for the
unknown stress tensor.
Along the centreline, the dependent variables will be determined here by imposing the

symmetric conditions directly on the corresponding networks rather than using the usual
L’Hopital’s rule or a simpli�ed form of the governing equations. The detailed implemen-
tation is as follows.
As mentioned earlier, all variables and their derivatives in the present procedure are ex-

pressed as linear combinations of the nodal variable values over the whole domain. Let f be
a dependent variable. The �rst-order derivative of f with respect to r along the centreline
can be written as

f c;r =H
c
[r]
�H

−1
[r] f (72)

where subscript c denotes the centreline. Making use of the symmetric conditions, (72) be-
comes

0=Hc
[r]
�H

−1
[r] f (73)

By solving (73), the centreline values of f can be expressed in terms of the remainder of the
nodal values of f. A variable f can be vz; Szz; Srr or S��. With this treatment, one can avoid to
solve ordinary di�erential equations that are associated with a simpli�ed form of constitutive
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Figure 10. ‘Wiggly’ tube problem, 
=0:1, N =0:16, Oldroyd-B �uid: the plot of �ow resistance (fRe)
versus Weissenberg number (We) for three discretizations (17× 17, 21× 21 and 25× 25).

equations or to compute higher-order derivatives that are associated with L’Hopital’s rule. Note
that higher-order derivatives lead to larger errors in the context of function approximation.
Moderate corrugation amplitude and moderate wavelength (
=0:1; N =0:16): The retar-

dation de�ned as �= �=(�s + �) is chosen to be 0:15, which was used in Reference [43].
Convergence can be obtained up to high values of the Weissenberg number, at least of about
30 (Figure 10). For the range of We from 0 to 20, the �ow resistance does not di�er substan-
tially from that obtained at We=0 (Newtonian �uid), which looks feasible when compared
to the available results in the literature. However, the present �ow resistance is observed to
increase quickly when We¿20. The reason could be that data densities become too coarse to
accurately capture the solution, especially for the stress �elds near boundaries.
Moderate corrugation amplitude and small wavelength (
=0:1; N =0:5): The �ow of an

Oldroyd-B �uid through an undulating tube (
=0:1; N =0:5) was simulated by FCC [45],
where the �ow resistance values were tabulated at two Weissenberg numbers, We=1:2071
and 3:6213. They are used here for comparison. Numerical predictions by FCC and IRBFN
are in good agreement as shown in Figure 11. Like the previous case (
=0:1; N =0:16),
there is a substantial increase in the present fRe when the Weissenberg number is greater
than a certain value (about of 5 here). Thus, this We value is considered as a limit of the
IRBFN approach using the present data densities.

4.2.4. Comparison with FCC. In an e�ort to ease the large computational costs that are re-
quired by PSFD and PCFD, Pilitsis and Beris [45] developed a full pseudo-spectral method,
namely the Fourier–Chebyshev collocation (FCC) technique, for computing the steady-state
axisymmetric non-Newtonian �uid �ow in a periodically constricted tube. In FCC, the radial
dependence of the variables are approximated by using Chebyshev polynomials, while the
dependence on the axial coordinate are approximated by Fourier sine and cosine functions.
The FCC yielded highly accurate solutions using low numbers of data points. The computa-
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Figure 11. ‘Wiggly’ tube problem, 
=0:1, N =0:5, Oldroyd-B �uid: comparison of the �ow resistance
obtained by IRBFN and FCC [45]. The two numerical predictions are in good agreement.

tional costs are relatively low for coarse discretizations, but become very expensive for �ne
discretizations due to the full structure of large Jacobian matrices.
The present IRBFN method appears to be close to the FCC method in the sense (a) they

are global high-order methods, (b) the governing equations are approximated in the strong
form by point collocation and (c) the resultant matrices are dense.
In contrast to the FCC method, the present method uses only IRBFNs to represent the �eld

variables and their derivatives in the radial and axial directions. Furthermore, collocation points
in the IRBFN method can be chosen randomly, while the coordinates of data points in the
radial direction in the FCC method should be chosen as the roots of Chebyshev polynomials
(note that the use of cosine-type points in FCC allows a fast Fourier transform to be used
to shift between spectral space and physical space; the IRBFN method has no such rapid
matrix computations). The present method can be extended to non-periodic �ows or irregular
domains straightforwardly.

5. CONCLUDING REMARKS

This paper reports a numerical method based on RBFNs for solving non-Newtonian �uid
�ow problems. The main advantages of the present method are its mesh-free nature and easy
implementation. IRBFNs are employed to represent the solution variables; the multiple spaces
of network weights are converted into the single space of nodal variable values. In the case
that the viscosity function depends on the rate of deformation, stress-splitting techniques are
utilized to enhance numerical stability. Stabler and faster convergence is obtained with the
chosen viscosity being the average value of the viscosity �eld of the previous iteration. The
method is veri�ed through the simulation of �ows of inelastic and viscoelastic �uids in a
straight duct and in an undulating tube that are induced by axial pressure drop. The results
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are compared with the analytic and benchmark solutions; good agreement is achieved. The
main disadvantage of the method is the large computational requirement imposed because of
the involvement of dense matrices. The implementation of a local meshless version and how
to treat convected stress derivatives e�ectively with IRBFNs will be investigated in future
studies.
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